Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2,2-diphenyl-2-(prop-2-yn-1-yloxy)acetate

H. P. Sumathi,^a Ulrich Flörke,^b* H. S. Yathirajan,^a A. S. Dayananda^a and A. R. Ramesha^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany, and ^cR. L. Fine Chemicals, Bangalore 560 064, India

Correspondence e-mail: ulrich.floerke@upb.de

Received 3 February 2012; accepted 22 February 2012

Key indicators: single-crystal X-ray study; T = 130 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.117; data-to-parameter ratio = 18.2.

The molecular structure of the title compound, $C_{18}H_{16}O_3$, exhibits a new R_2 -C(COOMe)(OCH₂CCH) group. The C-O-C-C torsion angle is 153.3 (1)°. The dihedral angles are 79.89 (5)° between phenyl/phenyl planes, and 73.13 (5) and 79.05 (8)° for the two COOMe/phenyl plane pairs.

Related literature

For related literature on the background of this work, see: Ferguson *et al.* (1995); Ohkuma *et al.* (2000). For related structures, see: Narayanan *et al.* (2011); Shah *et al.* (2011); Siddaraju *et al.* (2010); Zhang *et al.* (2008); Zhang *et al.* (2011).

Experimental

Crystal data

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\rm min} = 0.969, T_{\rm max} = 0.992$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.117$ S = 1.023545 reflections 195 parameters 13808 measured reflections 3545 independent reflections 2623 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.045$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.33 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

HPS is grateful to the University of Mysore for research facilities. HSY thanks R. L. Fine Chemicals, Bangalore, India, for the gift of a sample of the title compound.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2267).

References

- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ferguson, G., Carroll, C. D., Glidewell, C., Zakaria, C. M. & Lough, A. J. (1995). Acta Cryst. B51, 367–377.
- Narayanan, P., Sethusankar, K., Ramachandiran, K. & Perumal, P. T. (2011). Acta Cryst. E67, 02658.
- Ohkuma, T., Koizumi, M., Ikehira, H., Yokozawa, T. & Noyori, R. (2000). Org. Lett. 2, 659–662.

Shah, K., Raza Shah, M. & Ng, S. W. (2011). Acta Cryst. E67, 0568.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Siddaraju, B. P., Yathirajan, H. S., Narayana, B., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, 02136.
- Zhang, W., Yao, L. & Tao, R.-J. (2008). Acta Cryst. E64, o307.

Zhang, C.-H., Zhao, J.-M. & Chen, B.-G. (2011). Acta Cryst. E67, o150.

supplementary materials

Acta Cryst. (2012). E68, o874 [doi:10.1107/S1600536812007982]

Methyl 2,2-diphenyl-2-(prop-2-yn-1-yloxy)acetate

H. P. Sumathi, Ulrich Flörke, H. S. Yathirajan, A. S. Dayananda and A. R. Ramesha

Experimental

The title compound was obtained as a gift sample from R. L. Fine Chem., Bengaluru, India. X-ray quality crystals were obtained from toluene by slow evaporation (m.p. 318 K).

Refinement

H atoms were clearly identified in difference syntheses, idealized and refined riding on the C atoms with C—H = 0.95– 0.99 Å, and with isotropic displacement parameters $U_{iso}(H) = 1.2U(C_{eq})$ or $1.5U(-CH_3 \text{ H} \text{ atoms})$. All CH₃ H atoms were allowed to rotate but not to tip. H6 was refined freely.

Computing details

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT* (Bruker, 2002); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and local programs.

Figure 1

Molecular structure with labeling and displacement ellipsoids drawn at the 50% probability level.

F(000) = 592

 $\theta = 2.7 - 23.4^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Prism. colourless

 $0.37 \times 0.22 \times 0.10 \text{ mm}$

T = 130 K

 $D_{\rm x} = 1.253 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1710 reflections

Methyl 2,2-diphenyl-2-(prop-2-yn-1-yloxy)acetate

Crystal	data

C₁₈H₁₆O₃ $M_r = 280.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.6771 (17) Å b = 9.2410 (13) Å c = 12.7055 (18) Å $\beta = 93.090$ (3)° V = 1486.3 (4) Å³ Z = 4

Data collection

Bruker SMART APEX	13808 measured reflections
diffractometer	3545 independent reflections
Radiation source: sealed tube	2623 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.045$
φ and ω scans	$\theta_{\rm max} = 27.9^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 16$
(SADABS; Sheldrick, 2004)	$k = -12 \rightarrow 12$
$T_{\min} = 0.969, \ T_{\max} = 0.992$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.048$ Hydrogen site location: difference Fourier map $wR(F^2) = 0.117$ H atoms treated by a mixture of independent S = 1.02and constrained refinement 3545 reflections $w = 1/[\sigma^2(F_0^2) + (0.0487P)^2 + 0.3727P]$ where $P = (F_0^2 + 2F_c^2)/3$ 195 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ 0 restraints $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.79582 (9)	0.45794 (12)	0.41949 (10)	0.0378 (3)

O2	0.66203 (9)	0.37609 (11)	0.51072 (9)	0.0296 (3)	
O3	0.78724 (8)	0.22289 (11)	0.28970 (8)	0.0247 (3)	
C1	0.72467 (12)	0.21809 (15)	0.38023 (11)	0.0203 (3)	
C2	0.73393 (12)	0.36505 (15)	0.43855 (12)	0.0233 (3)	
C3	0.66088 (16)	0.51182 (17)	0.56825 (15)	0.0393 (5)	
H3A	0.7287	0.5250	0.6078	0.059*	
H3B	0.6038	0.5100	0.6173	0.059*	
H3C	0.6494	0.5920	0.5185	0.059*	
C4	0.90005 (12)	0.22196 (19)	0.31004 (13)	0.0299 (4)	
H4A	0.9188	0.1639	0.3738	0.036*	
H4B	0.9261	0.3219	0.3222	0.036*	
C5	0.94840 (13)	0.15941 (18)	0.21894 (14)	0.0302 (4)	
C6	0.99076 (16)	0.1114 (2)	0.14631 (16)	0.0432 (5)	
H6	1.0260 (19)	0.068 (3)	0.0870 (19)	0.073 (7)*	
C11	0.60998 (11)	0.20274 (15)	0.33670 (11)	0.0199 (3)	
C12	0.57858 (12)	0.25763 (17)	0.23856 (13)	0.0271 (4)	
H12A	0.6288	0.3037	0.1969	0.032*	
C13	0.47418 (13)	0.24566 (19)	0.20079 (13)	0.0326 (4)	
H13A	0.4534	0.2830	0.1332	0.039*	
C14	0.40033 (13)	0.17983 (17)	0.26091 (13)	0.0291 (4)	
H14A	0.3292	0.1700	0.2343	0.035*	
C15	0.43066 (12)	0.12818 (17)	0.36029 (13)	0.0279 (4)	
H15A	0.3798	0.0853	0.4028	0.033*	
C16	0.53494 (12)	0.13889 (16)	0.39776 (13)	0.0247 (3)	
H16A	0.5554	0.1023	0.4657	0.030*	
C21	0.76008 (11)	0.09067 (15)	0.45070 (11)	0.0198 (3)	
C22	0.76063 (12)	-0.04599 (16)	0.40361 (13)	0.0255 (3)	
H22A	0.7343	-0.0573	0.3327	0.031*	
C23	0.79918 (13)	-0.16498 (17)	0.45948 (14)	0.0307 (4)	
H23A	0.7992	-0.2575	0.4269	0.037*	
C24	0.83784 (13)	-0.14904 (17)	0.56317 (14)	0.0312 (4)	
H24A	0.8648	-0.2305	0.6015	0.037*	
C25	0.83705 (13)	-0.01480 (18)	0.61038 (13)	0.0294 (4)	
H25A	0.8628	-0.0040	0.6815	0.035*	
C26	0.79855 (12)	0.10528 (16)	0.55403 (12)	0.0239 (3)	
H26A	0.7988	0.1977	0.5868	0.029*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0357 (7)	0.0252 (6)	0.0539 (8)	-0.0100 (5)	0.0158 (6)	-0.0027 (5)
O2	0.0363 (7)	0.0233 (6)	0.0304 (6)	-0.0054 (5)	0.0122 (5)	-0.0064 (4)
03	0.0162 (5)	0.0372 (6)	0.0210 (6)	0.0001 (4)	0.0048 (4)	0.0035 (4)
C1	0.0200 (8)	0.0221 (7)	0.0192 (7)	-0.0014 (6)	0.0044 (6)	0.0010 (6)
C2	0.0222 (8)	0.0225 (7)	0.0252 (8)	-0.0003 (6)	0.0006 (6)	0.0029 (6)
C3	0.0522 (12)	0.0246 (8)	0.0424 (11)	-0.0033 (8)	0.0146 (9)	-0.0111 (7)
C4	0.0174 (8)	0.0434 (10)	0.0292 (9)	-0.0015 (7)	0.0042 (7)	0.0028 (7)
C5	0.0207 (8)	0.0364 (9)	0.0338 (9)	0.0061 (7)	0.0034 (7)	0.0106 (7)
C6	0.0339 (11)	0.0559 (12)	0.0407 (11)	0.0179 (9)	0.0090 (9)	0.0058 (9)
C11	0.0183 (8)	0.0195 (7)	0.0222 (8)	0.0014 (5)	0.0029 (6)	-0.0005 (5)

supplementary materials

C12	0.0207 (8)	0.0349 (8)	0.0259 (8)	-0.0001 (6)	0.0036 (7)	0.0052 (7)
C13	0.0283 (9)	0.0455 (10)	0.0237 (8)	0.0029 (7)	-0.0016 (7)	0.0074 (7)
C14	0.0191 (8)	0.0317 (8)	0.0361 (9)	0.0006 (6)	-0.0028 (7)	0.0011 (7)
C15	0.0195 (8)	0.0289 (8)	0.0355 (9)	-0.0009 (6)	0.0042 (7)	0.0077 (7)
C16	0.0211 (8)	0.0271 (8)	0.0261 (8)	0.0005 (6)	0.0026 (6)	0.0065 (6)
C21	0.0143 (7)	0.0222 (7)	0.0231 (8)	-0.0017 (5)	0.0022 (6)	0.0003 (6)
C22	0.0241 (8)	0.0262 (8)	0.0260 (8)	0.0000 (6)	-0.0011 (7)	-0.0031 (6)
C23	0.0254 (9)	0.0236 (8)	0.0430 (10)	0.0013 (6)	0.0001 (8)	-0.0024 (7)
C24	0.0214 (8)	0.0296 (8)	0.0418 (10)	0.0013 (6)	-0.0044 (7)	0.0100 (7)
C25	0.0231 (9)	0.0364 (9)	0.0277 (9)	-0.0020 (7)	-0.0068 (7)	0.0050 (7)
C26	0.0194 (8)	0.0263 (7)	0.0260 (8)	-0.0031 (6)	-0.0001 (6)	-0.0008 (6)

Geometric parameters (Å, °)

01—C2	1.1965 (18)	C12—H12A	0.9500
O2—C2	1.3312 (18)	C13—C14	1.381 (2)
O2—C3	1.4522 (18)	C13—H13A	0.9500
O3—C1	1.4327 (17)	C14—C15	1.385 (2)
O3—C4	1.4396 (18)	C14—H14A	0.9500
C1—C21	1.532 (2)	C15—C16	1.384 (2)
C1C11	1.534 (2)	C15—H15A	0.9500
C1—C2	1.548 (2)	C16—H16A	0.9500
С3—НЗА	0.9800	C21—C26	1.382 (2)
С3—Н3В	0.9800	C21—C22	1.398 (2)
С3—Н3С	0.9800	C22—C23	1.384 (2)
C4—C5	1.458 (2)	C22—H22A	0.9500
C4—H4A	0.9900	C23—C24	1.388 (2)
C4—H4B	0.9900	C23—H23A	0.9500
С5—С6	1.179 (3)	C24—C25	1.378 (2)
С6—Н6	0.98 (2)	C24—H24A	0.9500
C11—C12	1.385 (2)	C25—C26	1.394 (2)
C11—C16	1.391 (2)	C25—H25A	0.9500
C12—C13	1.388 (2)	C26—H26A	0.9500
C2—O2—C3	116.02 (12)	C14—C13—C12	120.41 (15)
C1—O3—C4	116.32 (11)	C14—C13—H13A	119.8
O3—C1—C21	109.60 (11)	C12—C13—H13A	119.8
O3—C1—C11	105.57 (11)	C13—C14—C15	119.54 (15)
C21—C1—C11	112.45 (11)	C13—C14—H14A	120.2
O3—C1—C2	109.03 (11)	C15—C14—H14A	120.2
C21—C1—C2	112.47 (12)	C16—C15—C14	120.13 (15)
C11—C1—C2	107.43 (11)	C16—C15—H15A	119.9
01—C2—O2	124.42 (14)	C14—C15—H15A	119.9
01—C2—C1	124.47 (14)	C15—C16—C11	120.51 (14)
O2—C2—C1	111.08 (12)	C15—C16—H16A	119.7
О2—С3—НЗА	109.5	C11—C16—H16A	119.7
O2—C3—H3B	109.5	C26—C21—C22	119.02 (13)
НЗА—СЗ—НЗВ	109.5	C26—C21—C1	123.87 (13)
O2—C3—H3C	109.5	C22—C21—C1	116.90 (13)
НЗА—СЗ—НЗС	109.5	C23—C22—C21	120.55 (15)

НЗВ—СЗ—НЗС	109.5	C23—C22—H22A	119.7
O3—C4—C5	108.41 (13)	C21—C22—H22A	119.7
O3—C4—H4A	110.0	C22—C23—C24	119.95 (15)
C5—C4—H4A	110.0	С22—С23—Н23А	120.0
O3—C4—H4B	110.0	С24—С23—Н23А	120.0
C5—C4—H4B	110.0	C25—C24—C23	119.87 (15)
H4A—C4—H4B	108.4	C25—C24—H24A	120.1
C6—C5—C4	177.6 (2)	C23—C24—H24A	120.1
С5—С6—Н6	178.2 (14)	C24—C25—C26	120.22 (15)
C12—C11—C16	119.06 (14)	C24—C25—H25A	119.9
C12—C11—C1	120.77 (13)	C26—C25—H25A	119.9
C16—C11—C1	120.11 (13)	C21—C26—C25	120.38 (14)
C11—C12—C13	120.32 (15)	C21—C26—H26A	119.8
C11—C12—H12A	119.8	C25—C26—H26A	119.8
C13—C12—H12A	119.8		
C4—O3—C1—C21	-52.38 (16)	C11—C12—C13—C14	0.4 (3)
C4—O3—C1—C11	-173.72 (12)	C12—C13—C14—C15	1.3 (3)
C4—O3—C1—C2	71.12 (15)	C13—C14—C15—C16	-1.8 (2)
C3—O2—C2—O1	0.2 (2)	C14—C15—C16—C11	0.7 (2)
C3—O2—C2—C1	-178.05 (13)	C12—C11—C16—C15	1.1 (2)
O3—C1—C2—O1	-10.3 (2)	C1-C11-C16-C15	178.21 (13)
C21—C1—C2—O1	111.46 (17)	O3—C1—C21—C26	119.93 (15)
C11—C1—C2—O1	-124.27 (16)	C11—C1—C21—C26	-122.97 (15)
O3—C1—C2—O2	167.95 (11)	C2-C1-C21-C26	-1.5 (2)
C21—C1—C2—O2	-70.27 (16)	O3—C1—C21—C22	-54.88 (16)
C11—C1—C2—O2	54.00 (15)	C11—C1—C21—C22	62.22 (17)
C1	153.28 (13)	C2-C1-C21-C22	-176.34 (13)
O3—C1—C11—C12	-28.55 (17)	C26—C21—C22—C23	-0.1 (2)
C21—C1—C11—C12	-148.02 (14)	C1—C21—C22—C23	175.02 (14)
C2-C1-C11-C12	87.70 (16)	C21—C22—C23—C24	-0.1 (2)
O3—C1—C11—C16	154.35 (13)	C22—C23—C24—C25	0.4 (2)
C21—C1—C11—C16	34.87 (18)	C23—C24—C25—C26	-0.6 (2)
C2-C1-C11-C16	-89.40 (15)	C22—C21—C26—C25	-0.2 (2)
C16—C11—C12—C13	-1.6 (2)	C1—C21—C26—C25	-174.87 (14)
C1—C11—C12—C13	-178.74 (14)	C24—C25—C26—C21	0.5 (2)